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1. Introduction 

1.1. Purpose of the document 

This document provides a protocol for the use of micro-scale EO-images to drive EO-

based indicators to guide end-users.  It contains information about general characteristics 

of Very High Resolution (VHR) images for micro-scale applications, literature research 

about existing algorithms which are used for various information extractions from VHR 

images and applications for GEOURBAN case study sites. 

1.2.  Definitions and acronyms  

Acronyms 

2DPCA Two-Dimensional Component Analysis 

DEM  Digital Elevation Model 

DSM  Digital Surface Model 

DTM  Digital Terrain Model 

EO  Earth Observation 

GA  Genetic Algorithm  

GEOURBAN ExploitinG Earth Observation in sUstainable uRBan plAnning & 

maNagement 

GIS  Geographical Information Systems 

Lidar  Light Detection and Ranging 

LULC  Land Use Land Cover 

MLC  Maximum Likelihood Classifier 

MLP  Multi-Layer Perception  

NN  Neural Network  

PCA  Principal Component Analysis 

RS  Remote Sensing 

SVM  Support Vector Machine  
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2. Work Package Overview 

WP4 includes the micro-scale applications in GEOURBAN case studies. Although 

previous research projects already addressed the use of very high spatial resolution (VHR) 

Earth Observation (EO) data in urban planning and management, WP4 represents a 

unique attempt to collect and to analyze an integrated EO dataset suitable for the 

estimation of a subset of the EO-based indicators developed in WP3. The development of 

EO data analysis techniques is beyond the scope of GEOURBAN, therefore state of the 

art methods are used to derive specific products from raw EO datasets. VHR (e.g. 

Ikonos/Quickbird/WorldView/RapidEye/TerraSAR-X type) satellite data is used in the 

GEOURBAN case studies. The output of this WP4 is a set of products to be used as 

inputs for indicator evaluation and a report on the techniques used to derive these 

products from raw EO data. 

 

 

3. Characteristics of Very High Resolution (VHR) 

Data 

3.1. Introduction 

The data obtained by using sensors without contacting the Earth surface is called remote 

sensing (RS) data.  Acquiring data from the Earth by using RS relies on measuring and 

recording of electromagnetic radiation, which is also called irradiance, reflected from 

objects on the Earth’s surface by the sensors.  The sensors on satellite platforms have 

solid look angle and hence record spectral radiance of the Earth objects   RS data can be 

classified based on various criteria. If the sensor’s platform is of concern, the RS data can 

be obtained from either satellites or airplanes or ground platforms. The data obtained from 

satellites and airplanes are called satellite and aerial images, respectively. When the 
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energy source is considered, RS data can be obtained either from active or passive ways.  

When the sensor uses its own electromagnetic energy it is called active RS and radar 

sensors are of this type.  When the sensor uses electromagnetic energy of the Sun then it 

are called passive RS and electro-optic sensors are of this type.   

All RS data have four types of resolution namely, spatial, temporal, spectral and 

radiometric.  Spatial resolution refers to the pixel size of the image which implies smallest 

object size that can be differentiated geometrically. Temporal resolution reflects the 

frequency of sensor’s visit to the same location. Spectral resolution is the range of 

wavelength obtained by division of electromagnetic spectrum into wavelength intervals.  

Radiometric resolution defines the precision of the image’s brightness values. The 

appraise RS data selection for extraction of urban planning requires consideration of the 

four resolution types. Very high resolution (VHR) RS data refers to spatial resolution of 5x5 

m or less in GEOURBAN project. When the urban planning indicators are considered 

spatial resolution of 5x5 m or less is found to be appropriate for extracting related 

indicators. The temporal resolution is important for investigating the change in the 

indicators over a time period. Spectral resolution determines the extractability of indicators 

related with urban surface materials. VHR data with higher spectral resolution provides 

detection of object’s material types as well as their geometries. 

Most of the VHR data have spectral resolution of four spectral intervals which are also called bands, 
namely, Blue (B), Green (G), Red (R) and Near infrared (NIR).  The VHR data can be obtained in stereo 
pair images from some of the satellites and stereo image processing products provide with 3D 
representation of the terrain and the objects on the terrain like built ups. The VHR data obtained from 
active RS can have various bands and be obtained in different polarizations. Properties of existing 
VHR data is given in Table 1 and  

Table 2.   

Before extracting any indicator form the VHR data based on image processing 

algorithms, images usually gone through three levels of pre-processing given in the 

following subsections  

3.2. Pre-Processing of Image Data 

It is applied in three levels.  The first level (Level I) pre-processing involves geometric and 

radiometric correction. The second level (Level II) is image enhancement for better 

interpretation or information extraction. The third level is called image transformation 

which is carried out in order to extract specific characteristics like texture, vegetation, etc. 
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The level of pre-processing to be applied to VHR data depends on the accuracy level of 

the obtained data which are specified by the data providers and the information to be 

extracted from the data.   

3.2.1. Level I-geometric and radiometric correction 

This level pre-processing is mostly essential as the VHR data providers mainly do not 

provide geometrically corrected data.  Each pixel of the image data corresponds to an area 

on the Earth’s surface, which has certain positional information in the form of coordinates. 

The acquired image pixels may not be geometrically correct to indicate the actual locations 

of the objects due to geometric distortion occurred during image accusation. These 

geometric distortions may occur due to varying attitude, tilt, and velocity of the platform 

from which image is captured, type of the camera used for image acquisition and relief 

displacement of the ground.  They have to be corrected before any information extraction. 

Geometric correction of images is performed based on a two-step procedure. In 

the first step, mathematical transformation is applied to the raw image coordinates to 

obtain actual locations of the pixels.  The procedure requires obtaining precise coordinates 

of some known features like road crossings; corners of the built ups etc. on the image as 

well as a digital terrain model (DTM) with resolution close to the spatial resolution of the 

VHR data. 

 The commonly used transformation functions are: 

• Affine 

• Bilinear 

• Quadratic 

• Bi-quadratic 

• Cubic 

• Bi-cubic 

 

 When an image is corrected for pixel locations, the new pixels of image represent 

the actual locations of pixels on the Earth. However, these pixels do not contain brightness 

values. Hence in the second step of geometric correction, the brightness values are 

resampled to be assigned to geometrically corrected pixels.  The brightness values of the 
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corrected image can be obtained from brightness values of original image pixels by using 

the following sampling strategies:  

 

• The nearest neighbor 

• Bilinear interpolation 

• Cubic convolution 

In the nearest neighbor resampling method, the center coordinate of each pixel of 

the rectified image is found in the original image (raw image before rectification) and the 

nearest pixel center’s brightness values in the original image is assigned to the rectified 

image pixel . In the bilinear interpolation resampling strategy, the four nearest neighbor 

pixel’s brightness values are considered. The weighted average of the four neighboring 

brightness values is calculated and assigned to the pixel. In the cubic convolution 

method, the weighted average of the sixteen neighboring pixels based on the distance to 

the rectified pixel center is evaluated and assigned to the pixel of the rectified image. 

The radiometric correction refers to compensation and removal of errors in the 

brightness values. These errors arise from sensors and atmospheric effects.  Usually VHR 

data providers correct such errors before sending them to the customers. 
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Table 1. Properties of VHR data from various satellite sensors (Modified from Düzgün and Demirel 2011) 
 

 

 

 

Sensor/Satellite 
Operator/ 
Country 

Launch and 
End Date 

Sensor 
Type 

Resolution  
 
 

Revisit (days) 
Spectral Resolution (m) or Polarimetry 

Spatial 
(m) 

Radiometic 
(bit) 

THEOS 
GISTA/ 
Thailand 

2008 
PAN 
MS 

0.45-0.90 
0.45-0.52, 0.53-0.60, 0.62-0.69, 0.77-0.90 

2 
15 

8 
8 

26 (14-5) 

TOPSAT 
BNSC-UK 
MoD/UK 

2005 
PAN 
MS 

0.50-0.70 
0.40-0.50, 0.50-0.60, 0.60-0.70 

2.8 
5.6 

- 
- 

4  
(2-2.5) 

WORLDVIEW-1 
Digital Globe 

USA 
2007 PAN 0.40-0.90 (S) 0.5 11 5 

WORLDWIEW-2 
Digital Globe 

USA 
2009 

PAN 
MS 

0.45-0.80 (S) 
0.40-0.45, 0.45-0.51, 0.51-0.58, 0.585-0.625, 0.63-
0.69, 0.705-0.745, 0.77-0.895, 0.860-1.04 (S) 

0.46 
1.84 

11 
11 

7 (1.1) 

SPOT-5 
CNES & 
Astrium/ 
France 

2002 
HRG-
PAN 

 

0.49-0.69 Super mode (S) 
  
 

2.5-5 
 

 
8 
 

26 (1-4) 
 

QUICKBIRD 
Digital Globe 

USA 
2001 

PAN 
Multi 

0.445-0.900 (S) 
VNIR: 0.45-0.52, 0.52-0.60, 0.63-0.69, 0.76-0.89 
(S) 

0.61-0.73 
2.5-2.9 

11 
11 

 

TERRASAR-X 
DLR&EADS 

Astium/ 
Germany 

2007 

Spotligh
t 

StripMa
p 

ScanSA
R 

X-Band  : 0.03 m FRQ: 9.65 GHz 
Dual (HH+VH), Single (VV/HH) 
Single: VV/HH 
Dual: HH+VV/HH+HV/VV+HV 
Single: VV/HH 

1 
3 
5 

16 

- 
- 
- 
- 

15 

PLEIADES-1&2 
CNES/Franc

e 
2010/2012 

PAN 
MS 

0.480-0.830 (S) 
0.43-0.55, 0.49-0.61, 0.60-0.72, 0.75-0.94 (S) 

0.5 (0.7) 
2 

12 26 (1) 

RAZAKSAT-1 
ATSB & 

TPM/Malasia 
2009 

PAN 
MS 

0.51-0.73 
0.45-0.52, 0.52-0.60, 0.63-0.69, 0.76-0.89 

2.5 
5 

8 (10) 
8 (10) 

14 
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Table 2. Properties of VHR data from various satellite sensors (continued, Modified from Düzgün and Demirel) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sensor/Satellite 
Operator/ 
Country 

Launch and 
End Date 

Sensor 
Type 

Resolution   
Revisit 
(days) 

    Spectral Resolution (m) or Polarimetry Spatial (m) 
Radiometic 

(bit) 
 

RISAT-1 ISRO 2009 SAR 
C-Band : 0.056 m FRQ: 5.35 GHz Single, Dual and Quad 
Pol. 

3-50 - 12 

DUBAISAT-1 EIAST/UAE 2009 
PAN 
MS 

0.42-0.89 (S CT) 
0.42-0.51, 0.51-0.58, 0.60-0.72, 0.76-0.89 (S-CT) 

2.5 
5 

8 
8 

5 (3) 
5 (3) 

EROS A1 
ImageSat/ 

Israel 
2000 PAN 0.5-0.9 (S) 1.9/0.9 10 1.8-4 

EROS B1 
ImageSat/ 

Israel 
2006 PAN 0.5-0.9 (S) 0.7 10 1.8-4 

FORMOSAT NSPO/Taiwan 2004 
PAN 
Multi 

0.45-0.90 
0.45-0.52, 0.52-0.60, 0.63-0.69, 0.76-0.90 

2 
8 

8 
8 

1 
1 

GEOEYE-1 GeoEye/USA 2008 
PAN 
Multi 

0.45-0.80 
0.45-0.51, 0.51-0.58, 0.655-0.69, 0.78-0.92 

   

IKONOS-2 
GeoEye/USA 

Space 
Imaging 

1999 
PAN 
Multi 

0.526-0.929 (S) 
0.445-0.516, 0.516-0.595, 0.632-0.698, 0.757-0.853 (S) 

0.82 
3.2 

11 
11 

 

ALOS JAXA/Japan 2006 
PALSAR 
PRISM 

AVNIR/2 

L-Band 1270 MHz, 23.6 cm 
Pan: 0.52-0.77 (Triplet) 
0.42-0.50, 0.52-0.60, 0.61-0.69, 0.76-0.89 

10-100 
2.5 
10 

3/5 
7 
8 

46 (2) 

BEIJING-1 
BLMIT/DMC/ 

China 
2005 

PAN 
Multi 

0.5-0.8 
0.52-0.62, 0.63-0.69, 0.76-0.9 

4 
32 

8 
10 

14 
5 

CARTOSTAT-1 
(IRS-P5) 

ISRO/India 2005 PAN 0.5-0.85 (S) 2.5 10 126 (5) 

CARTOSTAT-2 ISRO/India 2007 

Mono 
Paint 

/Brush 
Multi-View 

0.45-0.85 0.8 10 4-5 

RAPIDEYE-

1/2/3/4/5 

RapidEye/ 

Germany 
2008 Multi 0.44-0.51, 0.52-0.59, 0.63-0.685, 0.69-0.73, 0.76-0.85 6.5 12 5.5 
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3.2.2. Level II-image enhancement 

Image enhancement is not essential like geometric and radiometric correction. 

However, image enhancement may ease information extraction from the VHR data.  

Especially enhancements of spectral and spatial characteristics may improve visual image 

interpretation.  The spectral image enhancement improves visual quality of the image by 

increasing the contrast and variability in brightness values between the pixels in the image 

data.   Image histogram is one of the useful tools for assessing the radiometric quality of 

the images.  Image filters are other useful tools for enhancing local image parameters. 

This type of enhancement works on the edge of the images because of the moving 

window approach which sharpens or smoothens the pixels. 

3.2.3. Level III-image transformation 

No matter the image is interpreted by digital image analysis or visual techniques, 

transforming images provides additional information. Image transformation methods can 

be divided into two categories: 

• Transformations using single band of the image 

• Transformations using several bands of the image 

 The most frequently applied image transformation to single band of the image is 

extraction of texture measures. Similar to spatial filtering, texture measures are local 

features inherent in the image. There are various transformations based on multiple bands 

on the image data. The most frequently used ones are: 

• Transformation based on arithmetical operations, 

• Vegetation indices, 

• Principle Component Analysis (PCA), and 

• Transformation into different color spaces. 

3.3. Interpretation of VHR Data 

The VHR data should be interpreted in order to obtain urban planning indicators.  The 

interpretation can be performed either visual ways or using image analysis methods. 

Visual interpretation constitutes integrated analysis of the specific features related to the 



 

GEOURBAN 

Micro-scale Applications 
 

                                   Deliverable no.: D.4.2   Contract no.: ERA.Net-RUS-033 
Document Ref.: 

GEOURBAN_21_PT_KUZGUN 
Issue: 1.0 

Date: 30/11/2012 

Page number: 23/63 

 
 

 

Earth objects, namely, shape, size, tone, texture, pattern, shadow, association, and site 

(Düzgün and Demirel, 2011).  The image analysis methods on the other hand uses 

sophisticated algorithms specifically developed for the following basic operations:                                            

• Classification of the images 

• Change analysis  

• Digital surface and terrain modeling  

• Feature extraction 

Classification refers to grouping the object types existing in an image data. It is 

also called land use and land cover (LULC) classification, as the main aim is to categorize 

the landscape with its natural and man-made contents. Natural objects are forest, water, 

sand, etc. which are called land cover object classes. Man-made objects are urban, 

industrial; mine sites which are called land use object classes Figure 1.   Land use is mainly 

governed by human activity and Land use and land cover are interrelated.  Hence, any 

change in land cover can cause environmental changes, which, in turn, may have 

feedback effects on land cover and human driving forces that shape the direction and 

intensity of land-use. 

The first step in any classification is to define the LULC class hierarchies, where for example 
CORINE (Coordination of Information on the Environment) or  USGS land use/cover class hierarchies 
given in Table 3 and  
 

 

 

 

Table 4, respectively can be used. The second step is to select a classification 

method. There are two different perspectives that can be used to the image for the 

classification procedure. These are pixel-based or object-based classification methods. 

 

 

Figure 1. A typical image classification procedure (After Düzgün and Demirel, 2011). 
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 Pixel-based classification assigns a class value to each pixel of the image. 

Object-based classification (also called object-oriented classification) relies on first 

segmenting the image into homogeneous regions and then assigning the classes to each 

segment (e.g. Blaschke, 2010; Taubenböck et al. 2010;Düzgün and Demirel, 2011).  

Classification can be carried out based on supervised classification algorithms 

which comprise user interaction during classification procedure, where a data set called 

training data for each class is selected from the image by the analyst. Then the 

unclassified image pixels are settled on with the help of training data.  Unsupervised 

classification on the other hand, does not require user interference into the classification 

procedure. It mainly establishes the relation between the spectral properties and classes 

which are inherent in the image and then by using the established relationship 

classification is performed.  Both pixel-based and object-oriented perspectives and 

combinations of them can be used for supervised/unsupervised classification.  

The unsupervised classification mainly relies on clustering algorithms which 

enables grouping the image pixels or segments based on spectral values. The only 

feedback from the user is the number of classes (clusters) to be formed through clustering 

algorithms.  There are various types of clustering algorithms.  Among the various 

clustering algorithms, K-means clustering is one of the most widely used methods in 

classification. The main steps of K-means clustering algorithms are as follows: 

1. Determine k, which is number of classes. 

2. Calculate an initial cluster centroid by obtaining a sample set which has k number of 

clusters with single element (data value of each element will be the initial centroid). It 

can be obtained by selecting arbitrary pixels or segments. Then assign each of the 

remaining sample set to the nearest centroid. Re-compute the centroid after each 

assignment. By this way, initial sets of k clusters are obtained. 

3. Select each pixel or segment and compute its distance to each cluster centroid. 

Assign the pixel/object to the cluster with minimum distance and re-evaluate the 

cluster centroid after assignment. 

4. Repeat step 3 until there is not any unclassified pixel/region is left.  
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Table 3. Land use/cover hierarchies of CORINE for RS. 
 

Level I Level II Level III 

1.Artificial surfaces 1.1. Urban fabric  1.1.1. Continuous urban fabric 
1.1.2. Discontinuous urban fabric 

 1.2. Industrial, commercial and 
transport units  
 

1.2.1. Industrial or commercial units 
1.2.2. Road and rail networks and associated 
land 
1.2.3. Port areas 
1.2.4. Airports 

 1.3. Mine, dump and 
construction sites  
 
 

1.3.1. Mineral extraction sites 
1.3.2. Dump sites 
1.3.3. Construction sites 

 1.4. Artificial non-agricultural 
vegetated areas  

1.4.1. Green urban areas 
1.4.2. Sport and leisure facilities 

2. Agricultural areas 
 

2.1.Arable land  
 

2.1.1. Non-irrigated arable land 
2.1.2. Permanently irrigated land 
2.1.3. Rice fields 

 2.2. Permanent crops  
 

2.2.1. Vineyards 
2.2.2. Fruit trees and berry plantations 
2.2.3. Olive groves 

 2.3. Pastures  2.3.1. Pastures 

 2.4. Heterogeneous agricultural 
areas  
 

2.4.1. Annual crops associated with permanent 
crops 
2.4.2. Complex cultivation 
2.4.3. Land principally occupied by agriculture, 
with significant areas of natural vegetation 
2.4.4. Agro-forestry areas 

3. Forests and semi-
natural areas  

3.1. Forests  3.1.1. Broad-leaved forest 
3.1.2. Coniferous forest 
3.1.3. Mixed forest 

 3.2. Shrub and/or herbaceous 
vegetation association  
 

3.2.1. Natural grassland 
3.2.2. Moors and heathland 
3.2.3. Sclerophyllous vegetation 
3.2.4. Transitional woodland shrub 

 3.3. Open spaces with little or 
no vegetation  
 

3.3.1. Beaches, dunes, and sand plains 
3.3.2. Bare rock 
3.3.3. Sparsely vegetated areas 
3.3.4. Burnt areas 
3.3.5. Glaciers and perpetual snow 

4. Wetlands  
 

4.1. Inland wetlands 4.1.1. Inland marshes 
4.1.2.Peatbogs 

 4.2. Coastal wetlands  
 

4.2.1. Salt marshes 
4.2.2. Salines 
4.2.3. Intertidal flats 

5. Water bodies 
 

5.1. Inland waters 
 

5.1. 1. Water courses 
5.1.2. Water bodies 

 5.2. Marine waters 
 

5.2.1. Coastal lagoons 
5.2.2. Estuaries 
5.2.3. Sea and ocean 
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Table 4. Land use/cover hierarchies of USGS for RS. 

 
Level I Level II 

1.Urban and built-up land 11 Residential 
12 Commercial and service 
13 Industrial 
14 Transportation, communication and utilities 
15 Industrial and commercial complexes 
16 Mixed urban or built-up land 
17 Other urban and built-up land 

2. Agricultural land 21 Cropland and pasture 
22 Orchards, groves, vineyards, nurseries and ornamental 
horticultural areas 
23 Confined feeding operations 
24 Other agricultural land 

3. Rangeland 31 Herbaceous rangeland 
32 Shrub and brush rangeland 
33 Mixed rangeland 

4. Forest land 41 Deciduous forest land 
42 Evergreen forest land 
43 Mixed forest land 

5. Water 51 Streams and canals 
52 Lakes 
53 Reservoirs 
54 Bays and estuaries 

6. Wetland 61 Forest wetland 
62 No forested wetland 

7. Barren land 71 Dry salt flats 
72 Beaches 
73 Sandy areas other than beaches 
74 Bare exposed rock 
75 Strip mines, quarries and gravel pits 
76 Transitional areas 
77 Mixed barren land 

8. Tundra 81 Shrub and brush tundra 
82 Herbaceous tundra 
83 Bare ground tundra 
84 Wet tundra 
85 Mixed tundra 

9. Perennial snow and ice 91 Perennial snowfields 
92 Glaciers 

 

The supervised classification, on the other hand, contains a learning process 

through training data.  The training data should be collected from the image. The training 

data set should be consisting of all spectral bands to be used in classification, be 

representative of all the available spectral variability for a given class, be sufficient enough 

for effective learning and be distributed spatially in a balanced manner. The learning 

algorithms used in supervised classification can be grouped into five categories:   
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1. Probabilistic classification algorithms, 

2. Machine-learning-based classification algorithms, 

3. Artificial intelligence-based classification algorithms, 

4. Decision three classification algorithms, 

5. Fuzzy set-based classification algorithms. 

The probabilistic classification algorithms mainly rely on extracting statistical 

information from the training data and finding a statistical measure as the indication of 

each pixel’s/segment’s similarity to every class. Then the class label having the similarity 

value is assigned to the pixel/region.  Maximum likelihood classification is a typical and 

most frequently used one. Support Vector Machine (SVM) is among the most widely used 

machine learning-based classification algorithms.  In this method, an optimum 

hyperplane that separate the two different classes from each other is obtained.  A subset 

of training data, which is called support vectors, defines the hyperplane with maximum 

margin. It has been showed by Huang et al. (2002) and Pal and Mather (2005) that SVM 

performs better in RS applications than maximum likelihood classification. Artificial 

Neural Networks (ANN) forms the backbone of the artificial intelligence-based 

classification. The ANN determines the hidden relations and rules from the training data, 

which is also called learning Fuzzy set-based classification algorithms provide better 

treatment of uncertainties in the classification, which results in mixed classes or hardly 

separable classes.  Decision tree classification algorithms are based on hierarchical 

division of image data for defined class hierarchies, which can manually be constructed by 

the user or automatically using statistical properties of the spectral bands (Düzgün and 

Demirel, 2011).  

For the reliable classification output, the accuracy assessment should be 

considered carefully and the accuracy assessment is performed a set of data (ground 

truth).  The ground truth data can be obtained from field studies, existing maps or higher 

resolution images. In accuracy assessment, the output classes and ground truth are 

compared.  This comparison is systematically done with the help of so called error matrix 

(confusion matrix/contingency table).  Error matrix also used for obtaining statistical 

measures of accuracy. The most widely used statistic is Kappa statistic which is obtained 

by using error matrix. 
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Change analysis involves comparing multi temporal images of the same site. The 

simplest method of change analysis is subtracting of rationing multi temporal images. The 

values close to one and zero in the resulting change image indicate unchanged pixels, for 

subtraction and rationing, respectively.  For more sophisticated analysis change detection 

algorithms that compare processed multi temporal images like comparing vegetation 

indices, classification results and principle component analysis are used. Prior to any 

change analysis application, the following pre-image processing analyses should be 

performed in order to have a better change analysis accuracy (Düzgün and Demirel 2011. 

1. Precise geometric rectification analysis is required for accurate spatial pixel 

matching between the images. Inadequate geometric rectification yields unchanged 

areas as if they are changed since the spectral values corresponding the same area 

will not be the same for the same pixel. 

2. Atmospheric correction for all the images is necessary in order to eliminate 

atmospheric effects in the spectral values. 

3. If the images for the two or more different dates do not have the same spatial 

resolution and/or spectral band combinations, they their spatial and spectral 

resolution should be matched by image enhancement and resampling methods. 

 The result of change analysis is usually given in the form of a change map and a 

change matrix. An overview of change analysis methods can be found from Singh (1989), 

Mas (1999) and Lu et al. (2004).   

The digital surface and terrain model (DSM/DTM) of an area can be either 

obtained from stereo pairs of the same area with at least 60 % overlapping areas or from 

aerial or LIDAR data or from radar interferometry. DSM generation is mainly obtaining the 

terrain height for certain points on the image and interpolating the height values to create a 

continuous height surface.   

Feature extraction is mainly extracting boundaries of specific features like built up, 

road, railroad, airport, etc. from the images.  These algorithms are specifically developed 

for extracting each feature such as built up extraction algorithms, road extraction 

algorithms etc. and features are mainly the man-made objects (e.g. Wurm et al, 2011).   
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3.4. Software For VHR Data Analysis 

The most commonly used software products are: 

 ERDAS-LPS 

 PCI-Geomatica 

 ENVI-IDL 

 Z/I 

 GAMMA 

 SARscape 

 OSSIM (http://www.ossim.org/ OSSIM/OSSIMHome.html),  

 ORFEO (http://www.orfeo-toolbox.org/otblive/),  

 Multi- Spec (http://cobweb.ecn.purdue.edu/∼biehl/MultiSpec/) 

 IDIOT (http://srv-43-200.bv. tu-berlin.de/idiot) 

 DORIS (http://doris.tudelft.nl/).  

 Matlab 

 Definiens eCognition 

 BEAM (http://envisat/esa/int/beam) 

 

 ERDAS-LPS, PCI-Geomatica and ENVI-IDL, Z/I, Matlab, Definiens eCognition  

provide capabilities for processing optical, radar and lidar data with associated modules. 

GAMMA and SARscape are specifically designed for processing radar (microwave) 

images. OSSIM, ORFEO and BEAM are mainly for optical RS open source products, while 

DORIS and IDIOT are open-source software for processing of radar image.  Recently, 

various GIS software also provides limited image analysis capabilities. 

 

 

 

http://www.orfeo-toolbox.org/otblive/
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4. Relation Between Indicators and VHR Data 

Analysis 

The relation between routine planning activity indicators defined in WP3 and VHR data 

requirements as well as data analysis types are summarized in Table 5. As Table 5 

indicates, majority of the indicators can be extracted from classification of VHR data. There 

are various indicators related to stereo analysis of the VHR data.  However, obtaining VHR 

data in stereo pairs may not be either available by the satellite sensors or may require very 

sophisticated image analysis tools and relatively expensive as compared to conventional 

VHR data. These problems limit the widespread use of such data in routine urban planning 

practice.   Extraction of built ups and road networks are required for a few number of 

indicators which mainly requires feature extraction. 

 

Table 5. Summary of routine planning activity indicators and their relation to VHR Data. 

 

Sector 

GEOURBAN 

indicators/parameters 

with relevance to EO 

VHR Data Requirement VHR Data Analysis 

Air pollution and 

public health 

AOT, Surface topography 

(DTM), built up structure 

(DSM), built-up density, 

population distribution  as  

input for dispersion models 

and emission scenarios 

 

Stereo Images for DTM and 

DSM generation 

Multispectral images with at 

least four image bands of 

R,G,B,NIR 

Stereo image analysis 

for DSM and DTM 

Image classification for 

built-up density 

 

Energy efficiency  Built up structure DSM , 

solar input  

Stereo Images for DTM and 

DSM generation 

Stereo image analysis 

for DSM and DTM 
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Water sea/water surface 

temperatures, and 

temperature change, land 

cover , land cover change 

Multispectral images with at 

least four image bands of 

R,G,B,NIR 

Multi temporal images for 

change detection 

Image transformation for 

water and vegetation 

masks 

Classification for land 

cover 

Chance detection for 

land cover change 

 

Transportation and 

mobility, 

accessibility 

Traffic (street and railway) 

network, lines of 

communication 

Multispectral images with at 

least four image bands of 

R,G,B,NIR 

Feature extraction for 

road detection 

Thermal comfort surface temperatures, 

urban surface materials, 

surface albedo, surface 

emissivity, built up density, 

fractional land cover, 

imperviousness/surface 

sealing 

Multispectral images with at 

least four image bands of 

R,G,B,NIR 

Classification for land 

use and land cover, 

built-up density 

Urban green Land cover, urban surface 

materials, vegetation 

indices, fractional land 

cover 

Multispectral images with at 

least four image bands of 

R,G,B,NIR 

Image transformation for 

vegetation masks 

Classification for land 

use and land cover, 

built-up density 

Territorial 

development 

built up density, land cover, 

land cover change 

Multispectral images with at 

least four image bands of 

R,G,B,NIR 

Multi temporal images for 

change detection 

Classification for land 

cover 

Chance detection for 

land cover change 

 

Vulnerability to 

environmental 

hazards 

Surface topography(DTM), 

built-up density (DSM), 

population distribution, 

input for dispersion models, 

critical infrastructure 

Stereo Images for DTM and 

DSM generation 

Multispectral images with at 

least four image bands of 

R,G,B,NIR 

Surface Stereo image 

analysis for DSM and 

DTM 

Image classification for 

built-up density 
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5. VHR Data Analysis for Obtaining Indicators 

In the light of Table 5, in the following subsections algorithms used for land use land cover 

(LULC) detection for urban areas and building and road detection are overviewed as they 

require single VHR data. 

 

5.1. Land Use Land Cover (LULC) Classification  

Among the various classification algorithms, Maximum likelihood classifier (MLC), neural 

network (NN) classifiers and decision tree classifiers are well-known and most widely used 

classifiers. The MLC is used with respect to statistical theory; however, neural networks 

are used with respect to non-parametric approach. As a result, many types of neural 

networks have been developed (Lippman 1987); the most widely used in the classification 

of remotely sensed images is a group of networks called a multi-layer perception (MLP) 

(e.g. Paola and Schowengerdt 1995, Atkinson and Tatnall 1997). A decision tree classifier 

divides the classification problem into smaller branches. Depending on the number of 

variables used at each branch of the tree, there are univariate and multivariate decision 

trees (Friedl and Brodley 1997). Univariate decision trees have been used to develop land 

cover classifications at a global scale (DeFries et al. 1998, Hansen et al. 2000 ). Though 

multivariate decision trees are often more compact and can be more accurate than 

univariate decision trees (Brodley and UtgoV 1995), they involve more complex algorithms 

and, as a result, are affected by the set of algorithm-related factors (Friedl and Brodley 

1997).  

The support vector machine (SVM) is another widely used LULC classification 

algorithm which represents a group of theoretically superior machine learning algorithms.  

SVM is found to be competitive with the best available classification methods, including 

neural networks and decision tree classifiers (Huang, et al, 2010). In Seetha and 

Muralikrishna (2008) summarizes the pros and cons of various machine learning 

classification algorithms used in LULC classification (Table 6 and Table 7). 
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Table 6. Pros and cons of machine learning classifiers in LULC classification (Seetha and Muralikrishna, 2008). 

Machine  
Learning  
Algorithm 

Benefits Assumptions  
and / or  
Limitations 

Neural  
Network 

 can be used for classification or 
regression  

 able to represent Boolean functions 
(AND, OR, NOT)  

 tolerant of noisy inputs  

 instances can be classified by more 
than one output 

 difficult to understand structure of 
algorithm  

 too many attributes can result in over 
fitting  

 optimal network structure can only be 
determined  

 by experimentation 

Support   
Vector  
Machine 

 models nonlinear class boundaries  

 over fitting is unlikely to occur  

 computational complexity reduced 
to quadratic optimization  

 problem  

 easy to control complexity of 
decision rule and frequency of  

 error 

 training is slow compared to Bayes 
and Decision  

 trees  

 difficult to determine optimal 
parameters when  

 training data is not linearly separable  

 difficult to understand structure of 
algorithm 

Fuzzy logic  different stochastic relationships can 
be identified to  

 describe properties 

 Priori knowledge is very important to 
get good  

 results.  

 precise solutions are not obtained if 
the direction of  

 decision is not clear 

Genetic  
Algorithm 

 can be used in feature classification 
and feature selection  

 primarily used in optimization 
always finds a “good”  

 solution (not always the best 
solution)  

 can handle large, complex, non 
differentiable and  

 multimodal spaces.  

 Efficient search method for a 
complex problem space.  

 good at refining irrelevant and noisy 
features selected for  

 classification. 

 computation or development of scoring 
function is  

 nontrivial  

 not the most efficient method to find 
some optima,  

 rather than global  

 complications involved in the 
representation of  

 training/output data 
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Table 7. Comparison of machine learning algorithms used in LULC classification (Seetha and Muralikrishna, 

n.d.). 

 

Parameter Artificial Neural  
Networks 

Support Vector  
Machines 

Fuzzy logic Genetic  
Algorithms 

Type   
of approach 

Non-parametric Non-parametric 
with binary 
classifier 

Stochastic Large time series 
data 

Non-linear 
decision  
boundaries 

Efficient when the 
data have only few 
input variables. 

Efficient when the 
data have more 
input  
variables. 

Depends on  
Priori knowledge 
for  
decision  
boundaries 

Depends on the 
direction of  
decision 

Training speed Network structure,  
momentum rate,  
learning rate,  
converging criteria. 

Training data 
size, kernel 
parameter, class  
separability 

Iterative  
application of  
the fuzzy  
integral 

Refining irrelevant 
and noise genes 

Accuracy Depends on 
number of  
input classes. 

Depends on 
selection of  
optimal hyper 
plane 

Selection of  
cutting  
threshold 

Selection  of 
genes 

General 
performance 

Network structure. Kernel parameter Fused fuzzy  
integral 

Feature selection 

 

The total accuracy of the machine learning algorithms used in LULC classification for  24 

training cases are illustrated in Figure 2. 



 

GEOURBAN 

Micro-scale Applications 
 

                                   Deliverable no.: D.4.2   Contract no.: ERA.Net-RUS-033 
Document Ref.: 

GEOURBAN_21_PT_KUZGUN 
Issue: 1.0 

Date: 30/11/2012 

Page number: 35/63 

 
 

 

 

Figure 2. Overall accuracies of classifications developed using the four classifiers. Y-axis is overall accuracy (%). 

X-axis is training data size (% pixel of the image). (a) Equal sample size, 7 variables, (b) equal  sample rate, 7 

variables, (c) equal sample size, 3 variables, (d) equal rate, 3 variables. Huang et al. (2002). 
 

 The stabilities of the algorithms differed greatly and were affected by training data 

size and number of input variables. In general, the overall accuracies of the algorithms 

were more stable when trained using 20% pixels than using 6% pixels, especially when 

seven variables were used. The SVM gave far more stable overall accuracies than the 

other three algorithms when trained using 20% pixels with seven variables. It also gave 

more stable overall accuracies than the other three algorithms when trained using 6% 

pixels with seven variables (Figure 3(b)) and using 20% pixels with three variables (Figure 

3(c)). (Huang et al., 2002) 
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Figure 3. Boxplots of the overall accuracies of classifications developed using ten sets of training samples 

randomly selected from the Maryland data set. (a). Training size= 20% pixels of the image, number of input 

variables=7. (b) Training size=6% pixels of the image, number of input variables=7. (c) Training size=20% pixels 

of the image, number of input variables=3. (d) Training size=6% pixels of the image, number of input 

variables=3. 
 

For VHR data, there are several approaches adopted in the literature to overcome 

insufficiency of spectral information, such as making use of textural features, shape 

information of target classes or embedding spatial information to get context involved. 

Recently, impressive performance results are obtained by combining pixel-based and 

object-based methods, which is called "hybrid" (Shackelford and Davis 2003, Aksoy et al. 

2009, Wang et al. 2008, Tarabalka et al. 2010, Wang et al. 2005). In most of these studies, 

selection of a hierarchical or decision-tree-based approaches stands out (Aksoy et al., 

2009, Shackelford and Davis, 2003, Wang et al., 2008).  In (Aksoy and Akcay, 2005), a 
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multi-resolution approach is used and a decision tree classification which uses Gini index 

is reported to be more successful than a multivariate Gaussian classifier for 7 classes, 

namely, roof, street, path, grass, trees, water, and shadow. For LULC problem, decision 

trees are used even in the existence of partly missing data and shown to be able to fuse 

data from multiple sources successfully (Aksoy et al., 2009). It is also noted that decision 

trees are as good as other popular classifiers such as MLC, SVM, NN, etc. (Aksoy et al., 

2009).  

 

5.2. Building  and Road Extraction 

As the manual extraction of urban objects from VHR data requires qualified domain 

experts and a large amount of effort in terms of time and cost, resent building extraction 

algorithms focus on semi/automatic methods to increase the speed of this process 

However, due to the required accuracy and the involved complexity in the VHR data, semi- 

or fully automated building extraction methods are still in the process of improvement 

(Wilkinson 2005).  

Extraction of urban objects like buildings and roads from high-resolution satellite 

data has mainly two different aspects. The first aspect is related to the object properties. 

Inherently, man-made structures are composed of different sizes and different surface 

materials such as concrete, brick, asphalt, metal, plastic, glass, shingles, soil etc. (Aytekin 

et al. 2012). Hence, there is a high spatial and spectral diversity. Usually urban 

environment involves complex features like various shapes and surface materials and 

buildings may appear indistinguishable from roads and pavements or vice versa. Also 

rooftops may reflect fragmented characteristics due to shading or they may be occluded by 

other buildings or vegetation. The second aspect is related to the image properties. 

Images differ in resolution, sensor type, orientation, quality, dynamic range, illumination 

conditions, weather conditions, seasons etc. ( Aytekin et al.,2012). Thus, it is hardly 

possible to use a certain algorithm for all kinds of images and all types of urban objects lie 

buildings and roads. As a result, due to the complexity of the problem, there are various 

approaches for extraction of buildings and roads, which are still in the stage of 

improvement. 
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The early works in building detection were based on line extraction, edge detection 

and building polygon generation. These methods mostly use a large set of heuristic rules 

and are computationally expensive. Typical examples of these methods are Herman and 

Kanade (1986), Huertas and Nevatia (1988), Irving and McKeown (1989),Matsuyama and 

Hwang (1990), Venkateswar and Chellappa (1991), Krishnamachari and Chellappa 

(1996), Lin and Nevatia (1998), Kim and Nevatia (1999),Mayer (1999), Gereke et al. 

(2001), Persson et al. (2005) and Peng and Jin (2007). The studies of Muller et al. (1997), 

Baltsavias et al. (2001) and Sohn and Dowman (2001) extensively discuss the effect of 

resolution on the building extraction. 

The existing approaches related to automatic/semi-automatic extraction of buildings 

from VHR data can be divided into two main categories. The first category relies on the 

classification of the objects using multispectral reflectance values (e.g. Segl and Kaufmann 

2001, Shan and Lee 2002, Benediktsson et al. 2003, Lee et al. 2003, Ünsalan and Boyer 

2005, Sohn et al. 2005, Katartzis and Sahli 2008; Taubenböck et al., 2010). The second 

category is mainly based on feature extraction techniques from panchromatic (PAN) 

images (e.g. Lin and Nevatia 1998, Wei et al. 2004, Wei and Prinet 2005).  

 In general, building extraction from VHR data involves two phases.  In the first 

phase the region of interest (RoI) i.e. urban built-up areas which contain building foot print 

is obtained. Then in the second phase, buildings based on feature extraction and 

classification algorithms are obtained. In the literature, different kinds of features were 

defined and feature spaces were created (Pesaresi 2000, Benediktsson et al. 2001, Tatem 

et al. 2001, Haverkamp 2004, Zhen et al. 2004). These features were either classified if 

supervision is available or clustered if supervision is not possible.  

The features of building extraction which are widely used in the literature can be 

grouped as geometric, specktral and structural. Geometric features define basic 

geometrical properties such as area, circumference, roundness, right angles, corners, 

straight lines etc. Spectral features are related to color or band information. Structural 

features refer to connectedness of neighbors according to some similarity measures.  

Classification of the content was generally performed by the rule-based and the 

context-driven approaches and the content was classified into several types such as 

buildings, vegetation, roads and water areas. In doing this, density (rural, suburban, 

urban), object complexity (residential, industrial, military), architecture (elaborate, plain, 
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none), terrain defined by digital elevation model (DEM) (flat, hilly, mountainous) or 

vegetation defined by Normalized Difference Vegetation Index (NDVI) (none, moderate, 

heavy) were taken into account.  

Some studies are concentrated on extracting low-level features from model-based 

context-driven hypothesis and subsequently set relations among them in favor of 

supporting the building hypothesis (Haverkamp 2004, Zhen et al. 2004, Peng and Liu 

2005, Katartzis and Sahli 2008, Lizarazo and Elsner 2009). 

Multi-scale analyses are also studied in the literature (Huang et al. 2007, Chen et al. 

2009). Most of the works in the literature concentrates only on the extraction of a single 

object such as only buildings or only roads. They do not consider road extraction and 

building extraction together. Aytekin et al. (2012) proposed a generic algorithm for 

automatic extraction of buildings by considering the roads as well. 

 Besides buildings, road extraction is also considered in semi- or fully automated 

object detection from VHR data. Mostly snakes, higher order active contours, dynamic 

programming or probabilistic approaches have been proposed for road detection. For 

example, Klang (1998), Laptev et al. (2000) and Peteri and Ranchin (2003) used the most 

common snake’s algorithm for the detection of road. Mena and Malpica (2003) and Guo et 

al. (2004) focused on segmenting road areas. Guo et al. (2004) dealt with investigating on 

how to build geo-specific road databases from aerial images for driving simulation. Mena 

and Malpica (2003) used the Dempster-Shafer theory of evidence for the fusion of texture 

to extract linear features. Amini et al. (2002) proposed a fuzzy logic algorithm for road 

extraction from multispectral imagery. Barzohar and Cooper (1996) used dynamic 

programming and Bicego et al. (2003) proposed probabilistic approaches for road 

detection. Bacher and Mayer (2005) introduced an approach for automatic road extraction 

from high-resolution multispectral imagery; Christophe and Inglada (2007) proposed a 

robust geometric method to provide a first step extraction level of road; and Yang and 

Wang (2007) proposed an improved model for road detection based on the principles of 

perceptual organization and classification fusion in human vision system (HVS). 

 Topology, parametric models, snakes, and semantic networks are the most popular 

road representation methods. Table 8 summarizes methodologies and image resolution 

used for road extraction.  As it can be seen from Table 8, as well as various images 
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obtained from different RS platforms, the spatial resolution of the images used for road 

extraction ranges from 0.5 meters to 75 meters. 

 

Table 8. Road detection methods and used spatial resolution 

Previous Research  Resolution (m) 

 

Methodology  

Bajcsy and Tavakoli (1976)  79 topology 

Wang and Newkirk (1988) 10 semantic network 

Fiset and Cavayas (1997) 30 topology, tracking 

Netanyahu et al. (1997) 1-3 parametric 

Tupin et al. (1998)  semantic network 

Karathanassi et al. (1999) 6.25, 10 topology, parametric 

Laptev et al. (2000) 0.5 snakes 

Jeon and Hong (2002)  grouping, snakes 

Shi and Zhu (2002) 1 topology 

Stoica et al. (2004) 5 point processes 

Mena and Malpica (2005) 0.5 texture 

Zhang and Couloigner (2006) 1 texture 

Hu et al. (2007) 1 tracking 

Yang and Wang(2007) 1 perceptual organization 

Peng et al. (2008) 0.6 variational model 

Movaghati et al. (2010) 1 particle, Kalman filtering 

 

5.3. Change Analysis 

As most of the indicators involve analysis of changes in urban areas, detecting changes 

from multi-temporal VHR data is a valuable tool.  Obtaining appropriate change analysis 

relies on spatial, temporal, spectral and radiometric properties of VHT data.   The following 

conditions should be satisfied for an effective change analysis (Jensen et al., 1997, 

Lunetta and Elvidge, 1998, Coppin et al., 2004, Millward et al., 2005): 
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 VHR data from the same satellite sensor should be obtained if the image differencing 

or rationing approaches will be used so that the change analysis does not affected by 

the radiometric differences. Considering the issues related to spatial resolution, VHR 

data from the same satellite sensor is also useful for less effort of geometric 

correction. 

 The images obtained from different years should be from the similar time of year or 

similar season or month to be least affected by the solar illumination angle effects 

and to minimize differences in seasonal land cover like vegetation, water. 

 VHR data of different dates should be registered to each other or orthorectified with 

an accuracy of 0.5 pixel of 0.5 RMSE (Root Mean Square Error) so that change 

analysis does not affected by spatial distortions. 

 Each VHR data should be normalized radiometrically in order to minimize 

atmospheric effects. 

As change analysis has one of the widest application areas of RS, literature is abundont. 

Pape (2006) summarized existing change detection methods (Table 9) by refering to Singh 

(1989), Coppin and Bauer (1996), Lunetta and Elvidge, (1998), Yuan et al., (1998), and 

Coppin et al., (2004)  
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Table 9. Summary of change detection approaches (After Pape, 2006) 
Change Analysis Method Description of the Method Pros Cons 

Post-classification 
Comparison 
 

Independently produce 
spectral classification and 
then compare multi temporal 
classifications pixel-by-pixel 

-No radiometric 
processing 
required 
- No post change 
classification 
required 

-Results dependent on 
accuracy of 
original classification 
 

Composite Analysis Statistical difference 
determined using multistage 
decision logic 
 

- Necessitates only 
a single 
classification 

-Very complex especially 
for multiple dates 
- Demands prior 
knowledge of logical 
interrelationships of the 
classes 
- Difficulty in class 
labelling 

Univariate Image 
Differencing 
 

Subtraction of multi temporal 
imagery, original or 
transformed data 
 

- Widely adopted 
- Simple 

 

-Requires precise 
registration 
- Highly dependent on 
change/no 
change thresholding 
technique 

Image Ratioing Pixels are ratioed, no change 
ratio = 1 

-Simple Criticized as being 
statistically invalid 
(Riordan, 1981) 

Bi-Temporal Linear Data 
Transformation 

Applied to two-date imagery 
to produce uncorrelated data. 
Most widely used ones are 
PCA and Tasselled 
Cap  

- Simple 
- Very effective 

 

- PCA requires 
comprehensive 
knowledge of study area 
 

Change Vector Analysis Multivariate change detection 
that processes the full 
dimensionality of 
the image data and produces 
two outputs: change 
magnitude and change 
direction 
 

- Analyzed change 
concurrently in all 
data layers 
- Highly effective 

 

- Requires perfect 
registration 
- Intensive user 
interaction 
 

Image Regression Mathematical model that 
describes the fit between 
through step-wise regression 
- Assumes a linear 
relationship between 
multitemporal no change 
data 
 

- Regression 
techniques also 
account for 
atmospheric 
conditional and sun 
angle 
 

-Threshold definition 
critical 
- Report accuracies 
similar to univariate image 
differencing but more 
complex 
 

Multitemportal Spectral 
Mixture Analysis 
(MSMA) 
 

Based on differences in high 
spectral resolution end 
member 

- detect very fine 
detailed change 
(i.e. thinning of 
forests) 

 

 

Requires high spectral 
resolution 
imagery 
- Provide physically-
based, standardized 
measures of fractional 
abundance 
 

 



 

GEOURBAN 

Micro-scale Applications 
 

                                   Deliverable no.: D.4.2   Contract no.: ERA.Net-RUS-033 
Document Ref.: 

GEOURBAN_21_PT_KUZGUN 
Issue: 1.0 

Date: 30/11/2012 

Page number: 43/63 

 
 

 

 

6. VHR SAR Data Analysis for Obtaining Indicators 

In contrast to passive optical sensors, radar systems are active imaging devices capable 

of acquiring data both during day and night independently from weather or environmental 

conditions. 

SAR systems operate at a single wavelength or frequency, hence the appearance of 

different objects in SAR images is rather determined by geometrical and dielectric 

properties of the illuminated objects rather than by their biophysical or chemical 

characteristics as in case of optical data. In particular, most important factors influencing 

the radar backscatter are system-specific imaging parameters such as frequency-

wavelength ratio, polarization and imaging geometry, object-specific imaging parameters 

(e.g., surface roughness) as well as terrain and object geometry (Esch et al., 2012). 

SAR sensors used to have a reputation as being unsuitable for a precise thematic 

characterization of the urban environment (Dell’ Acqua, 2010). Nevertheless, this has 

changed with the emergence of the latest-generation SAR sensors such as TerraSAR-X, 

Tan-DEM-X RADARSAT-2, CosmoSkyMed or ALOS-PALSAR and the resulting 

operational availability of VHR SAR data. 

Different studies have shown that radar imagery is an excellent basis for classifying, 

monitoring and analyzing urban settlements and their development over time, especially in 

cases of large area mapping (e. g. Dell’Acqua & Gamba, 2003; Dell’Acqua, 2009). Object-

oriented concepts for urban SAR data analyses have been recently presented in the 

literature (Matikainen et al. 2006; Esch et al. 2010) together with methods for deriving 

single built-up structures and areas experiencing built-up reconstruction from VHR radar 

data (Thiele et al., 2007). Grey and Luckman (2003) also introduced the use of 

interferometric coherence derived from ERS data for mapping urban extent. Furthermore, 

approaches for data fusion of SAR imagery and optical or LIDAR data have been also 

investigated (Gamba et al., 2006). A comprehensive overview on methods and 

applications of radar RS of urban areas is provided by Soergel (2010). 
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6.1. Monitoring Urban Land Surface Deformations  

Monitoring urban settlements by means of SAR data represents one of the major topics in 

radar RS. In this context, spaceborne radar interferometry (InSAR) has already proven its 

great potential for detecting and quantifying ground deformations (e.g., due to mining or 

underground construction activities, earthquakes or volcanic processes) with a theoretical 

precision in describing the ground displacement up to a few millimeters (Colesanti et al, 

2003). The most promising InSAR method in an urban context is the Permanent Scatterers 

Synthetic Aperture Radar Interferometry (PSInSAR) (Ferretti et al. 2000, 2001). In 

particular, instead of extracting information from the entire SAR image, PSInSAR exploits 

long temporal series of data to identify point-like stable reflectors, whose electromagnetic 

stability allows obtaining around 1-meter-accuracy DEM (Pesissin and Ferretti, 2007) and 

millimetric estimates of terrain motion (Ferretti et al. 2007). Usually PSs correspond to 

man-made targets, making the application of PSInSAR technology particularly suitale for 

urban areas (Pesissin and Ferretti, 2007). 

 

6.2. Monitoring Urban Land Cover 

Esch et al. (2010, 2011) demonstrated the suitability of VHR SAR data for detecting and 

delineating urban settlements by means of textural information and proposed a 

classification procedure including a texture estimation process in combination with the 

analysis of the backscattering characteristics of the SAR images. The classification 

process results in a binary mask discriminating between built-up areas and non-built-up 

areas, i.e. the so called Urban Footprint (UF), with overall accuracies ranging between 

70% and 95%, depending on the geographical area. Into details, the texture analysis is 

carried out by comparing the local image heterogeneity to the fading texture (i.e., the 

scene-specific level of heterogeneity induced by speckle). This allows to derive a texture 

layer exhibiting very high values in correspondence of built-up areas (for which the 

difference between the two quantities is more pronounced), which is used together with 

the original backscatter intensity information to detect urban areas. 
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6.3. Digital Elevation Model Retrieval 

Digital elevation models (DEMs) are the basis for several applications and represent a 

paramount source information in urban applications (provided that the spatial accuracy is 

sufficiently high, as in the case of the DEM retrieved by means of TerraSA-X and 

TanDEM-X data which is generated at 12m resolution, Wessel et al. 2008). The data 

sources used for the DEM processing can be manifold (Li et al., 2005). In this framework, 

multitemporal SAR images acquired from displaced vantage points provide the basis for 

calculating the DEM of a certain area. The generation of a DEM starts from the 

unwrapping of the interferometric phase and involves the conversion to terrain height and 

the transformation from slant-range coordinates to an Earth-related reference frame 

(Rufino et al., 1998). The basic idea is to find the intersection between two curves: 

 The interferometric phase, which has a monotonous (decreasing or increasing) 

behavior as a function of range time; 

 The geometric phase, linking the interferometric phase to the height of one object 

on the Earth. This phase can be related to range time, as a vertical straight line of 

increasing terrain height crosses the circles of constant range delays, and it is 

monotonous as well, (with a trend opposite to the interferometric phase), 

intersecting thus the first one. 

 

7. Case Studies 

7.1. LULC Classification for Basel 

 

Since many of the identified indicators can be derived from land use land cover (LULC) 

maps, in this study LULC classification for a selected site of Basel is presented. To this 

aim one 4 band (R,G,B,NIR) Quickbird Multispectral image with a 2.51 m spatial resolution 

is considered (Figure 4). In particular, the study area covers a part of the central business 

district with dense built up and road features. 
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Figure 4. Quickbird image of the study area 

 

 A flow chart of the LULC algorithm implemented for this case study is given in 

Figure 5. 
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Figure 5. Flowchart of the applied classification methodology. 

 

 

The first step consists in the visual investigation of the image since every LULC 

classification algorithm requires a reliable identification of the different information classes 

in the region of interest. Six major classes have then been identified, namely water, grass, 

trees, bare land, roads and built-up areas. In the second step is preparation of a point 

vector layer to test the classification accuracies by using GIS software. 330 points which 

are proportional to the each LULC class, is generated manually (Figure 6). Figure 6 

represents the distribution of the test data on the study area.   
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Figure 6. Spatial distribution of the test data for accuracy assessment. 
 

Due to dense build-up area concentration of the study area (Figure 4), Gabor filters, which 

provide good information about man-made linear objects (Bayram et al., 2011a and 

2011b), are added as additional image bands to the multispectral data (Step III).  Gabor 

filters in eight directions for each image band are obtained.  Then each set of eight Gabor 

filters for four image bands (i.e.32 Gabor filters on total) are reduced to one maximum 

Gabor response image for four multispectral bands.  Finally the Gabor maximum response 

images are added as additional four bands to the original image bands (Figure 7).  Gabor 

filters are obtained by running Matlab codes.  An example Gabor filter code in Matlab 

environment can be found from 

http://www.mathworks.com/matlabcentral/fileexchange/23253-gabor-

filter/content/Gabor%20Filter/gabor_example.m and listed below: 

 

http://www.mathworks.com/matlabcentral/fileexchange/23253-gabor-filter/content/Gabor%20Filter/gabor_example.m
http://www.mathworks.com/matlabcentral/fileexchange/23253-gabor-filter/content/Gabor%20Filter/gabor_example.m
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function gabor_example() 

% an example to demonstrate the use of gabor filter. 

% requires lena.jpg in the same path. 

% the results mimic: 

% http://matlabserver.cs.rug.nl/edgedetectionweb/web/edgedetection_examples 

% .html 

% using default settings (except for in radians instead of degrees) 

% 

% note that gabor_fn only take scalar inputs, and multiple filters need to 

% be generated using (nested) loops 

% 

% also, apparently the scaling of the numbers is different from the example 

% software at 

% http://matlabserver.cs.rug.nl 

% but are consistent with the formulae shown there 

lambda  = 8; 

theta   = 0; 

psi     = [0 pi/2]; 

gamma   = 0.5; 

bw      = 1; 

N       = 8; 

img_in = im2double(imread('lena.jpg')); 

img_in(:,:,2:3) = [];   % discard redundant channels, it's gray anyway 

img_out = zeros(size(img_in,1), size(img_in,2), N); 

for n=1:N 

    gb = gabor_fn(bw,gamma,psi(1),lambda,theta)... 

        + 1i * gabor_fn(bw,gamma,psi(2),lambda,theta); 

    % gb is the n-th gabor filter 

    img_out(:,:,n) = imfilter(img_in, gb, 'symmetric'); 

    % filter output to the n-th channel 

    theta = theta + 2*pi/N; 

    % next orientation 

end 

figure(1); 

imshow(img_in); 

title('input image'); 

figure(2); 

img_out_disp = sum(abs(img_out).^2, 3).^0.5; 

% default superposition method, L2-norm 

img_out_disp = img_out_disp./max(img_out_disp(:)); 

% normalize 

imshow(img_out_disp); 

title('gabor output, L-2 super-imposed, normalized'); 
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Figure 7. Input image of classification with eight bands (R,G,B, NIR and  maximum Gabor responses of R,G,B, 

NIR). 

 

In Step IV, training data for the LULC classes are obtained to be used in SVM.  Visual 

investigation of the VHR data indicates that the study area contains building roofs with 

various roof material in grey, blue, white color as well as brick roofs.  Hence training set is 

established for classes of road, water, grass, tree, bare land and four different roof types. 

The four different building roof material is later combined in a single building class during 

post processing of SVM output. The training set for SVM classification is illustrated in 

Figure 8.  
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Figure 8. Training data of the SVM classification. 

 

Collection of the training data is carried out by using region of interest (RoI) tool of the 

ENVI.  Figure 9 and Figure 10 show the use of RoI tool in ENVI.  The training data could be 

selected pixels or manually generated polygons. Once the training set for every class is 

obtained separability values should be calculated by using ROI tools of the ENVI software 

again. Separability values change in a range of 0 and 2. Larger values represent clear 

separation between related class combinations. Figure 11 represents the use of the tool a 

and a separability output. 
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Figure 9. Use of RoI tool in ENVI 
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Figure 10. RoI tool interfaces of ENVI in the training data collection. 
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Figure 11. An example separability output of the ENVI 
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After collection of the training data and checking separability values of the classes, Step V, 

classification is performed by using Support Vector Machine (SVM) classification tool of 

the ENVI (Figure 12).  Use of SVM tool of ENVI is illustrated in Figure 13. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. LULC classification for the study area 
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Figure 13. Use of SVM tool of ENVI . 

  

The quality of the final LULC classification product in Figure 12 is evaluated by 

using accuracy measures of separation index, producer’s accuracy, user’s accuracy, 

overall accuracy and kappa coefficient. In  Table 10 class separation index values are 

given for every class pairs.   The lowest separation index is obtained for road and building 

as these urban features have similar radiometric properties in four of the multispectral 

bands as well as the Gabor responses. The separation index values are maximum for the 

pairs of natural and man-made classes.   
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Table 10. Pair separation index . 
 

Class Pair Separation Index 

Road Building 0.73 

Bare Land  Road 1.26 

Tree Bare Land  1.34 

Tree Road 1.39 

Bare Land  Building 1.66 

Road Building 1.70 

Bare Land  Road 1.80 

Bare Land Building 1.82 

Tree Building 1.83 

Grass Tree 1.89 

Tree Building 1.94 

Tree Road 1.95 

Grass Bare Land  1.96 

Tree Building 1.99 

Water Road 1.99 

Water Bare Land 1.99 

Grass Road 1.99 

Grass Building 1.99 

Water Tree 1.99 

Water Building 2.00 

Grass Building 2.00 

Water Road 2.00 

Water Grass 2.00 

 

 The accuracy measures for each class are given inTable 11.  The overall accuracy 

and Kappa coefficient is found to be 0.75 and 0.62, respectively.  Accuracy measures 

given in Table 11 indicates that even for a complex scene considered as the study area, 

water, grass and Building classes have high accuracy values.  Although the other classes’ 

accuracy values are less than water, grass and Building, they can be considered to be 
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satisfactory for deriving indicators from VHR satellite data.  Building roof material with 

shadows in a dense built environment is the main problem in classification. Additional 

information (spatial, spectral etc.) could provide significant improvements in classification. 

 

Table 11. Accuracy measures for each class . 

 

Measure Water Grass Tree Road 

Bare 

Land Building 

Producer’s 

Accuracy  0.94 0.89 0.4 0.83 0.37 0.78 

User’s 

Accuracy  0.94 0.83 0.6 0.43 0.59 0.93 

 

 

 For the classification of TerraSAR-X data, a pixel-based classification algorithm has 

been employed (Esch et al., 2010). In particular, the proposed methodology includes a 

specific pre-processing of the original SAR backscattering amplitude for extracting suitable 

texture information followed by an automated threshold-based image analysis procedure 

which accounts for both the original backscatter amplitude image and the computed 

texture. 

 The pre-processing phase aims at extracting texture information capable of 

highlighting regions characterized by highly structured and heterogeneous built-up areas. 

This is carried out by taking advance of the specific characteristics of SAR data which 

exhibit strong scattering due to double bounce effects in urban areas. Accordingly, focus is 

given on the analysis of local speckle, whose development is estimated by means of the 

local image heterogeneity CS defined as: 

   (1) 

where, for each pixel, μS and σS represent the mean and the standard deviation of the 

backscatter amplitude, respectively, computed in a local neighborhood. 
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It is possible to prove that the following relationship exists between the image 

heterogeneity CS, the true image texture CT and the so-called fading texture CF 

representing the heterogeneity caused by speckle: 

   (2) 

 Textured surfaces (e.g., urban environments, woodlands) are characterized by 

distinct structures, which lead to high CT and CF and hence to high values also for CS. In 

turn, homogeneous surfaces without any true structuring (e.g., grasslands, non-cultivated 

bare soil) show almost no true texture CT, meaning that CS more or less equals the fading 

texture CF which results in very low values being the backscatter almost randomly 

distributed. 

 In order to define a robust measure to describe the true image texture CT we take 

into account this specific behavior. In particular, we consider the difference between 

measured local image heterogeneity CS and scene-specific heterogeneity CF and we 

assume that the true local texture CT increases with a rising amount of real structures 

within the resolution cell. Accordingly, the local true image texture CT is estimated as: 

  (3) 

 Regions exhibiting highest values of  (referred to as “speckle divergence texture”) 

correspond to urban areas, whereas open areas such as grasslands or water bodies are 

characterized by lower values. 

The brightest regions in the image correspond with urban areas, while a low 

speckle divergence characterizes open areas such as grassland or water bodies (compare  

Figure 14 middle). 

The speckle divergence feature serves then as input to the classification procedure 

together with the original backscatter amplitude image. The process starts with the 

identification of potential urban scatterers (the so-called “urban seeds”), which correspond 

to man-made structures with a vertical component (i.e., strong scattering due to double 

bounce) and are characterized by both high backscattering amplitude and high speckle 

divergence. This is carried out by comparing the locally (i.e., computed on a 15x15 pixel 

neighborhood) and regionally (computed on a 45x45 pixel neighborhood) averaged  

against two thresholds. In case one of the thresholds is exceeded, the region is classified 
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as a distinct backscattering cluster (DBC). It is worth noting that the thresholds are set in a 

way that only pixels with a very high local or regional deviation from CF are assigned as 

DBC (Esch et al., 2012; Taubenböck et al., 2012). 

 In a second classification step all regions exhibiting both a certain amount of DBC in 

a neighborhood of 99x99 pixels and a regionally increased  (i.e., on the basis of two 

additional thresholds) are categorized as built-up areas. The outcome represents the final 

urban footprint imagery, which is reported for the case studies Basel (Figure 15Hata! 

Başvuru kaynağı bulunamadı.), Tjumen (Figure 15Hata! Başvuru kaynağı bulunamadı., left) 

and Tel Aviv (Figure 15,Hata! Başvuru kaynağı bulunamadı. right). 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 14.  TSX backscattering amplitude image of Basel, Switzerland (left); speckle divergence feature derived 

from backscattering amplitude data (middle) and geocoded urban footprint classification (right). 
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Figure 15 Urban footprint classification of Tjumen (left) and Tel Aviv (right) derived from TSX data. 

 

 In addition to the approach presented above based on VHR SAR data, also another 

method has been considered for retrieving the urban footprint from VHR optical images. In 

particular, RapidEye data have been taken into consideration. The RapidEye space 

segment consists of a constellation of five identical sun-synchronous EO satellites, which 

allow a global revisit time of only one day. 

The approach applied on RapidEye data consists of an object-based procedure with 

two modules: segmentation and classification. 

The basic task of the segmentation is to merge homogenous pixels into single 

segments in order to differentiate between heterogeneous neighboring regions (Benz et al. 

2004). To this purpose, a bottom-up region-growing technique has been employed and 

homogeneous areas (e.g., water, grasslands) result in segments with a completely 

different shape with respect to those obtained over spectrally heterogeneous areas such 

as built-up areas. 
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In the classification phase the band ratio ‘normalized difference vegetation index’ 

(NDVI) is first used to mask natural environment areas. Then, for each segment different 

features (i.e., size, shape and spectral information) are extracted and provided as input to 

a fuzzy classifier, which provides as output a probability of class membership. If such 

probability is higher than a certain threshold, then the object is categorized as belonging to 

the urban class. 

 The resulting urban footprint for the city of Tel Aviv, Israel is provided in Figure 16. A 

visual assessment based on 150 randomly distributed samples resulted in an overall 

accuracy of 84.6%. 

 

 

Figure 16. Urban footprint classification for Tel Aviv, Israel derived from RapidEye data. 

 

 It is worth noting that the urban footprint classification presented above can be 

further thematically refined by taking into consideration the percentage of impervious 

surfaces (PIS), which describes the entirety of impermeable surfaces including roads, 

buildings, parking lots, railroads or other infrastructural elements of urban areas such as 

squares and sidewalks. An effective technique for estimating PIS is that introduced by 
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Esch et al. 2009, which exploits Support Vector Regression. An example is provided in 

Figure 17, which reports the PIS computed for a Rapid Eye image acquired on 16th July 

2012 over Tyumen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Percent impervious surface in the Tyumen region (RU), derived by combined analysis of 

RapidEye and TerraSAR-X data. 

 


